85=(x^2-3)

Simple and best practice solution for 85=(x^2-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 85=(x^2-3) equation:



85=(x^2-3)
We move all terms to the left:
85-((x^2-3))=0
We calculate terms in parentheses: -((x^2-3)), so:
(x^2-3)
We get rid of parentheses
x^2-3
Back to the equation:
-(x^2-3)
We get rid of parentheses
-x^2+3+85=0
We add all the numbers together, and all the variables
-1x^2+88=0
a = -1; b = 0; c = +88;
Δ = b2-4ac
Δ = 02-4·(-1)·88
Δ = 352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{352}=\sqrt{16*22}=\sqrt{16}*\sqrt{22}=4\sqrt{22}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{22}}{2*-1}=\frac{0-4\sqrt{22}}{-2} =-\frac{4\sqrt{22}}{-2} =-\frac{2\sqrt{22}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{22}}{2*-1}=\frac{0+4\sqrt{22}}{-2} =\frac{4\sqrt{22}}{-2} =\frac{2\sqrt{22}}{-1} $

See similar equations:

| -4(g-14)+19=11 | | x-85.47=14.53 | | 3/4p-1/4p+3=2 | | -6r+11(r-1)=-3(9-2r) | | 3/4p-1/4p+3=-2 | | −14=−4(9x−1) | | 19s-9s+4s-6s-5s=15 | | n/8=19 | | 5x+10+x-4=90 | | 14y-2=14y+1 | | -2+5=3-(1-2x) | | -2x-14=5 | | 81=n2 | | a-3=10a+5 | | 1*5(20x-25)=4x-5 | | 2/3x+1/4x=33 | | 1-0.5x+0.25x^2=0 | | 6s+5=3s+7 | | 72=x3+8 | | 9(3m+3)=-2(1+m) | | x-19.95)/(-4)=0.01 | | 1+3(-6)+z=0 | | 5+x=−20.5 | | w−5–3=–1 | | -7(-4x-3)+7x=21-6x | | 70+7x=70 | | 6x2-47x+77=0 | | 8^(-x+14)=16^x | | 4x-9x-15=-5x+7-15 | | -6=3(n+5) | | |5x-7|=11-x | | 7x=7=9 |

Equations solver categories